Wavelet Analysis over Abelian Groups
نویسندگان
چکیده
منابع مشابه
Gabor Analysis over Finite Abelian Groups
Gabor frames for signals over finite Abelian groups, generated by an arbitrary lattice within the finite time-frequency plane, are the central topic of this paper. Our generic approach covers both multi-dimensional signals as well as non-separable lattices, and in fact the multi-window case as well. Our generic approach includes most of the fundamental facts about Gabor expansions of finite sig...
متن کاملWavelet Packets on Locally Compact Abelian Groups
The objective of this paper is to construct wavelet packets associated with multiresolution analysis on locally compact Abelian groups. Moreover, from the collection of dilations and translations of the wavelet packets, we characterize the subcollections which form an orthonormal basis for L(G).
متن کاملThe Dirac Operator over Abelian Finite Groups
In this paper we show how to construct a Dirac operator on a lattice in complete analogy with the continuum. In fact we consider a more general problem, that is, the Dirac operator over an abelian finite group (for which a lattice is a particular example). Our results appear to be in direct connexion with the so called fermion doubling problem. In order to find this Dirac operator we need to in...
متن کاملOrdered abelian groups over a CW complex
If X is a CW complex, one can assign to each point of X an ordered abelian group of finite rank whose subset of positive elements depends continuously on the points of X. A locally trivial bundle which arises in this way we denote by EX . In the present work we establish a topological classification of such bundles in terms of the first cohomology group of X with coefficients in the ring Z2.
متن کاملIntegral Cayley Graphs over Abelian Groups
Let Γ be a finite, additive group, S ⊆ Γ, 0 6∈ S, − S = {−s : s ∈ S} = S. The undirected Cayley graph Cay(Γ, S) has vertex set Γ and edge set {{a, b} : a, b ∈ Γ, a − b ∈ S}. A graph is called integral, if all of its eigenvalues are integers. For an abelian group Γ we show that Cay(Γ, S) is integral, if S belongs to the Boolean algebra B(Γ) generated by the subgroups of Γ. The converse is proven...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 1995
ISSN: 1063-5203
DOI: 10.1006/acha.1995.1004